A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate

نویسندگان

  • Xia Hong
  • Sheng Chen
  • Christopher J. Harris
چکیده

International Journal of Systems Science Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713697751 A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate X. Hong a; S. Chen b; C. J. Harris b a School of Systems Engineering, University of Reading, Reading, RG6 6AY, UK b School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Kernel Classifier Construction Using Orthogonal Forward Selection to Minimise Leave-One-Out Misclassification Rate

We propose a simple yet computationally efficient construction algorithm for two-class kernel classifiers. In order to optimise classifier’s generalisation capability, an orthogonal forward selection procedure is used to select kernels one by one by minimising the leave-one-out (LOO) misclassification rate directly. It is shown that the computation of the LOO misclassification rate is very effi...

متن کامل

Construction of RBF Classifiers with Tunable Units Using Orthogonal Forward Selection Based on Leave-one-out Misclassification Rate [IJCNN1219]

An orthogonal forward selection (OFS) algorithm based on leave-one-out (LOO) misclassification rate is proposed for the construction of radial basis function (RBF) classifiers with tunable units. Each stage of the construction process determines a RBF unit, namely its centre vector and diagonal covariance matrix as well as weight, by minimising the LOO statistics. This OFS-LOO algorithm is comp...

متن کامل

A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems

This contribution proposes a powerful technique for two-class imbalanced classification problems by combining the synthetic minority over-sampling technique (SMOTE) and the particle swarm optimisation (PSO) aided radial basis function (RBF) classifier. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is appli...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Systems Science

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2008